1,636 research outputs found

    Voltage and current spectra for matrix power converters

    Get PDF
    Matrix power converters are used for transforming one alternating-current power supply to another, with different peak voltage and frequency. There are three input lines, with sinusoidally varying voltages which are 120ā—¦ out of phase one from another, and the output is to be delivered as a similar three-phase supply. The matrix converter switches rapidly, to connect each output line in sequence to each of the input lines in an attempt to synthesize the prescribed output voltages. The switching is carried out at high frequency and it is of practical importance to know the frequency spectra of the output voltages and of the input and output currents. We determine in this paper these spectra using a new method, which has significant advantages over the prior default method (a multiple Fourier series technique), leading to a considerably more direct calculation. In particular, the determination of the input current spectrum is feasible here, whereas it would be a significantly more daunting procedure using the prior method instead

    Investigating periphyton biofilm response to changing phosphorus concentrations in UK rivers using within-river flumes

    Get PDF
    The excessive growth of benthic algal biofilms in UK rivers is a widespread problem, resulting in loss of plant communities and wider ecological damage. Elevated nutrient concentrations (particularly phosphorus) are often implicated, as P is usually considered the limiting nutrient in most rivers. Phosphorus loadings to rivers in the UK have rapidly decreased in the last decade,due to improvements in sewage treatment and changes to agricultural practises. However, in many cases, these improvements in water quality have not resulted in a reduction in nuisance algal growth. It is therefore vital that catchment managers know what phosphorus concentrations need to be achieved, in order to meet the UKā€™s obligations to attain good ecological status, under the EUā€™s Water Framework Directive. This study has developed a novel methodology, using within river mesocosms, which allows P concentrations of river water to be either increased or decreased, and the effect on biofilm accrual rate is quantified. These experiments identify the phosphorus concentrations at which algae becomes P-limited, which can be used to determine knowledge-based P targets for rivers. The ability to reduce P concentrations in river water enables algaeā€“nutrient limitation to be studied in nutrient-enriched rivers for the first time

    An analytical method for designing low noise helicopter transmissions

    Get PDF
    The development and experimental validation of a method for analytically modeling the noise mechanism in the helicopter geared power transmission systems is described. This method can be used within the design process to predict interior noise levels and to investigate the noise reducing potential of alternative transmission design details. Examples are discussed

    Networks of Informal Caring: a Mixed-Methods Approach

    Get PDF
    Care for older people is a complex phenomenon, and is an area of pressing policy concern. Bringing together literature on care from social gerontology and economics, we report the findings of a mixed-methods project exploring networks of informal caring. Using quantitative data from the British Household Panel Survey (official survey of British households), together with qualitative interviews with older people and informal carers, we describe differences in formal care networks, and the factors and decision-making processes that have contributed to the formation of the networks. A network approach to care permits both quantitative and qualitative study, and the approach can be used to explore many important questions

    A triclinic polymorph of benzanilide : disordered molecules form hydrogen-bonded chains

    Get PDF
    Peer reviewedPublisher PD

    ASPIRE Flight Mechanics Modeling and Post Flight Analysis

    Get PDF
    The Advanced Supersonic Parachute Inflation Research and Experiment (ASPIRE) is a series of sounding rocket flights aimed at understanding the dynamics of supersonic parachutes that are used for Mars robotic applications. SR01 was the first sounding rocket flight of ASPIRE that occurred off the coast of Wallops Island, VA on Oct. 4, 2017 and showed the successful deployment and inflation of a Mars Science Laboratory built-to- print parachute in flight conditions similar to the 2012 Mars Science Laboratory (MSL) mission. SR02 was the second sounding rocket flight that also occurred off the coast of Wallops Island on March 31, 2018 and showcased the successful deployment and inflation of a new strengthened parachute being considered for the Mars 2020 mission at fifty percent higher dynamic pressure than observed on MSL. Prior to both flights, a multi-body flight dynamics simulation was developed to predict the parachute dynamics and was used, in conjunction with other tools, to target Mars-relevant flight conditions. After each flight, the reconstructed trajectory was used to validate the pre-flight dynamics simulation and recommend changes to improve predictions for future flights planned for the ASPIRE pro- gram. This paper describes the flight mechanics simulation and the post flight reconciliation process used to validate the flight models

    Small Satellite-Sized Hypersonic Inflatable Aerodynamic Decelerators for Interplanetary Science Missions

    Get PDF
    To make the most of ridesharing opportunities, small satellite (SmallSat) mission designers endeavor to pack as much payload into a SmallSat-class form factor as possible. The mass and volume constraints of this smaller vehicle class present a challenge for interplanetary mission sets that require a means of achieving orbit insertion at their destination of interest. For a fully propulsive orbit insertion design, this may translate to the propellant mass being a significant fraction of the overall vehicle mass and prolonged insertion time. Aerocapture is a single quick maneuver that can significantly reduce the required propellant mass for orbit insertion. Because aerocapture uses a planetā€™s atmosphere to achieve the necessary change in velocity, a protective aeroshell is needed. The constraints imposed on secondary payloads render traditional rigid aeroshells mass and space prohibitive for the SmallSat class of vehicles; thus, warranting consideration of deployable designs that can be stowed compactly until needed for atmospheric entry. The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) is a deployable aeroshell that leverages inflatable toroids to achieve the large drag area needed for aerodynamic deceleration. While the technology is currently being analyzed for Mars human-scale missions, it has the potential applicability for interplanetary SmallSat-scale missions as well. This paper highlights a study conducted during an internship at NASA Langley Research Center to investigate the feasibility of using a scaled-down HIAD design in SmallSat aerocapture missions. Several scaling methodologies are investigated including use of parametric models and direct computer-aided design (CAD) model scaling. Candidate HIAD configurations that conform to secondary payload adapter requirements are identified. The Program to Optimize Simulated Trajectories II (POST2) is utilized to conduct orbit insertion performance and trajectory sensitivity studies using the candidate configurations at Earth, Venus, and Mars. The results of the study indicate that multiple SmallSat-sized HIAD designs, targeting a range of SmallSat payload classes, are feasible for planetary aerocapture missions to Mars and Venus as well as Earth-based aerocapture missions

    Development of a risk assessment tool to assess the significance of septic tanks around freshwater SSSIs. Phase 1 ā€“ Understanding better the retention of phosphorus in the drainage fields

    Get PDF
    The findings contained within this report have allowed Natural England to refine and implement a risk assessment methodology for septic tanks, which was developed through a previous project with CEH (NECR170)

    Phenotypic profiles of cultured glomerular cells following repeated cycles of hydrocarbon injury

    Get PDF
    Phenotypic profiles of cultured glomerular cells following repeated cycles of hydrocarbon injury.BackgroundThe glomerulus has been implicated as a target of hydrocarbon injury in vitro and in vivo. In the present studies, the phenotypic profiles of cultured rat glomerular cells (GCs) following repeated cycles of hydrocarbon injury were evaluated. Cultured GCs were incubated for 24 hours with benzo[a]pyrene (BaP; 3 Ī¼mol/L), a prototypical polycyclic aromatic hydrocarbon, and were allowed to recover overnight before two additional cycles of chemical challenge during serial propagation in vitro. At the end of this regimen, control cultures were characterized by predominance of fusiform cells that grew in ā€œhills and valleys,ā€ while GCs subjected to hydrocarbon injury displayed an epithelial morphology characterized by a rounded, polygonal shape clearly distinct from that normally exhibited by glomerular mesangial cells (GMCs) in culture.MethodsIndirect immunofluorescent detection of cell markers was conducted to identify cells of mesenchymal or epithelial origin. Measurements of DNA synthesis and cell number were performed to determine proliferative capacities of the different cell types in response to hydrocarbon challenge.ResultsImmunofluorescence studies revealed that control GC cultures contained mostly Ī±-smooth muscle (SM) actin-positive cells, with a few (5.1%Ā± 2.6) E-cadherinā€“positive cells occasionally identified. In contrast, BaP-treated cultures exhibited a mixed cell population in which E-cadherinā€“positive cells were predominant (66.6%Ā± 4.1). Single-cell cloning of naive cultures of GCs yielded four clones, three of which exhibited a fusiform morphology and were Ī±-SM actin positive (SCC 1 through SCC 3) and one (SCC 4E) that exhibited epithelial characteristics similar to those found in hydrocarbon-treated cultures. Immunofluorescence studies showed that epithelial cells in hydrocarbon-treated cultures, as well as SCC 4E-derived clones, were vimentin positive and cytokeratin negative, characteristics similar to glomerular visceral epithelial cells (GVECs). DNA synthesis and cell proliferation in clone SCC 1 were decreased following acute BaP challenge, while growth rates in SCC 4E-derived clones were unaffected by hydrocarbon injury. Repeated cycles of hydrocarbon challenge in clonal populations yielded different profiles of DNA synthesis, with significant decreases in SCC 1 and no changes in SCC 4E.ConclusionsThese observations suggest that hydrocarbon injury induces differential responses in cells of the glomerulus, resulting in inhibition of GMCs and selective growth advantage of GVECs. These alterations are reminiscent of critical events described in the pathogenesis of focal segmental glomerulosclerosis and raise important questions about the pathogenesis of hydrocarbon-induced nephropathies
    • ā€¦
    corecore